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SPECTFLO
Verston 3.0

1.1 Introduction
The prediction of spectroscopic observables from ab initio data can be used in trvo distinct
lvays. The first is to compare the results of such a calculation with experimental results in
order to verify the accuracy of the optimised geometry and force field. The second is to predict
the spectroscopic constants of a molecule which is experimentally unobserved. A computer is
the obvious tool to use to generate the large number of constants. The theoretical predictions
can then be used by the experimentalist to locate and identify vibrational and rotational
transitions.

SPECTRO uses the geometry and force field of any molecule. Changing to a normal co-
ordinate system it performs a rotational anall'sis, calculating rotat,ionaì constants, quartic and
sextic centrifugal distortion constants and rotation-vibration interaction constants. It then
performs a vibrational analysis finding anharmonic constants and fundamental frequencies.
The effects of Fermi and Coriolis resona,nce can be accounted for. It can also be used to gen'
erate vibrational transition intensities, given the molecule's dipole moment field. It calculates
these intensities using the same perturbation theor5' approach used in the derivation of the
spectroscopi c constants.

L.2 Attr ibut ion
All published work using this program should reference:
J.F. Gau', A. Willetts, \\i.H. Green and N.C. Handl', in "Advances in l\{olecular Viblations
and Coll ision Dynamics", ed. J. l \ ,{.  Bowma,n, JAI Press. Greenrvich, CT (1990).

Papers citing intensities generated using this program should also reference:
A. Wil letts, N.C. Handy, W.H. Green, and D. Jayati laka, J. Phys. Chem. 94, 5608 (1990).

Other references which ma-\'be helpful include:
W.H. Green, D. Jayati laka, A. Wil letts, R.D. Amos, and N.C. Handl ' ,  J. Chern. Ph1's. 93,
4e65 (19e0).
W.H. Green, A. Willetts, D. Jayatilaka, and N.C. Handy, Chem. Phys. Lett. 169, 127 (1990).
T.J. Lee, A. Willetts, J.F. Gaw and N.C. Handy, J. Chem. Phys. 90, 4330 (1989).
E.D. Simandiras, J.F. Gaw and N.C. Handy, Chem. Phys. Lett. 141, 166 (1987).
R.D. Amos, J.F. Gaw, N.C. Handy and S. Carter, J. Chem. Soc. Far. II, 84, 1247 (i988).
J.F. Gaw, P. Palmieri, A. Degli Esposti and N.C. Handy, J. Chem. Phys. 89, 959 (1988).
N.C. Handy, J.F. Gaw and E.D. Simandiras, J. Chem. Soc. Far. II,83, 1577 (1987).
J.F. Gaw and N.C. Handy, Chem. Phys. Lett. 128, 182 (1986).
J.F. Gaw, Y. Yamaguchi, H.F. Schaefer and N.C. Handy, J. Chem. Phys. 85, 5132 (1986).
J.F. Gaw and N.C. Handy, Chem. Phys. Lett. 121, 321 (1985).

The authors intend that this program will eventually be made widell' available. Holet'er,
until the program is read1,' for wide distribution, please do not distribute this program to others



without our permission. Others rvho are interested
apply to us personally. We will endeavour to keep
updates.

in obtaining copies of the progranr should
all of the users informed of rer-isions and

1.3 Acknowledg*ments
We are grateful for discussions and for the use of data for comparisons with the work of many
distinguished scientists. In particular we acknowledge Dr. Roger D. Amos. Professor J. E.
Boggs, Dr. Stuart Carter, Dr. Timothy J. Lee, Professor Paolo Palmieri, Dr. E.D. Simandiras,
Dr. W. Thiel, and Dr. Y. Yamaguchi. We are especially grateful to Ming-Der Su for help in
the programming, and to Professor Ian M. Mills for many fruitful discussions. We also wish
to thank the SPECTRO users whose helpful feedback has led to many improvements in the
program. We also acknowledge Dr. IU. E. Mura for help with the typesetting of this document.

L.4 Cautions and Comments
SPECTRO is written in standard Fortran, without the use of TAB cha,ra,cters or specialized
features. It should compile on most systems u'ithout difficulty.

The program has been tested on a variety of systems, and is believed to be correct for
most uses. A few failures in specialized applications have been noted, and are listed below;
work is in progress on correcting these deficiencies. By far, the most common sources of error
are mistakes in the input data; the authors recommend that this data be checked sever.al tirnes
before concluding that there is a bug in the code. The program prints messages in the output
that will hopefully lead to the discovery of these problems. One common ploblem to watch for
is the confusion of restricted and unrestricted summation coefficients; others are unit problems
and inconsistent labelling of the vibrational modes. Some errors can be detected by checking
that the Coriolis constants satisfy their symmetry relations. We have tried to make all of the
input free format. The program's memory is dynamically allocated; for verl' large molecules
there ma,v be array dimensions which need to be increased. Please contact us for special help
with these cases. If you are convinced you have found a bug, please let us know.

Many of the options are designed for debugging, or for very specialized uses; the user will
be well advised to avoid changing the more obscure options until he or she is satisfied with the
standard output. The spherical top codes (see Appendix L) are more difficult to use and less
tested than the asymmetric and symmetric top codes; users are advised to consult the authors
with any problems.

In cases of resonances involving more than two states, the user must do the required
diagonalizations by hand. SPECTRO will remove the near-singular terms properll' from the
spectroscopi c constants.

The intensity code is very new and has not been completely tested; we are confident that
it works for small symmetric and asymmetric tops, but we have not yet tried to applf it to large
molecules nor to spherical top molecules. The intensity code removes resonance denorninators
without waiting for a directive from the userl the denominators removed are noted in the
output.
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If the input is started from internal coordinates, the Cartesian fields generated are ade-
quate for the calculations that follow, but are not, strictly speaking, exact. The u'a5' u'e have
done this makes these Cartesian fields not isotope-independent. \Ve recommend that the user
do a different SPECTRO run starting from the internal field for each isotopic species desired.

The program removes the Darling-Dennison resonance terms, but does not construct the
2x2 resultant matrix. Also, the program cannot yet handle restricted-summation dipole fields.
The treatment of spherical tops is not as complete nor as user-friendly as fol other types of
molecules. Work is in progress.

1.5 Overview of the SPECTRO manual
Many spectroscopic constants are calculated by SPECTRO, in particular:
(1) anharmonic constants;
(2) Coriolis coupling constants;
(3) quartic and sextic centrifugal distortion constantsl
(4) vibration-rotation interaction constants;
(5) vibrational transit ion intensit ies.
The program has been tested against other calculations for these constants. Thev ale evaluated
for both asymmetric top molecules and symmetric top molecules, and manl' constants are also
calculated for spherical top molecules. Some of the theoretical background is given in the
Appendices, and the structure of the commands and data fields to run SPECTRO are given
in Sections 1.6-I.24.

To compute these spectroscopic constants, SPECTRO needs a geometrl' and a force field.
If intensities are desired, one must also provide a linear, quadratic, or cubic dipole field. The
for.ce field can be quadratic, cubic or quartic, and both the geometry and the fields can be
expressed in a variety of coordinate systems using various units and conventions. The diferent
coordinate systems SPECTRO can handle are discussed in Appendices E-G. \À/hatever the
initial input, SPECTRO transforms the geometry and the fields to the principal-axis, dimen-
sionless normal coordinate system used in the perturbation theory calculations, and then, if
desired, transforms the fields back to a specified coordinate system. Tlie user must tell the
program exactly which type of fields a.re being provided, using the main input. Section 1.6, and
must also specify the equilibrium geometry, Section 1.7.

Because there are so many different spectroscopic constants, transformed force fields, and
other quantities of interest to particular users, SPECTRO generates a ver)r large amount of
output - larger than most users like to handle. Commands to control and restrict this output
are discussed in Sections 1.6 and 1.12.

Different formulae are used if the molecule is an asymmetric top, a symmetric top, or
a spherical top as discussed in Appendices. If the molecule is a symmetric top or spherical
top, additional information regarding the alignment and labelling of degenerate modes must
be provided by the user, as described in Sections 1.8, 1.22 and 1.23.

The most common failure of the perturbation approach occurs when there is a Fermi,
Coriolis, or Darling-Dennison resonance. When this occurs, terms involving the resonance de-
nominator should be removed from the perturbation sum, and a matrix should be diagonalized
to treat the resonant interaction more exactly. The theory is discussed in Appendices H and
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I; the necessary inputs for telling SPECTRO which interactions are resonant are cletailed in
Sect ion 1.14.

There are a number of specialized instructions recognized by SPECTRO, ranging from
simple things like changing isotopes, Section 1.10, to rather esoteric calculations and debugging
options.

The constants that one will see after running SPECTRO are detailed belou'. The output
is clearly labelled to aid identification. Obviously if one runs with a quadratic field onll', then
those constants dependent upon a cubic or quartic field are not calculated; similarly if one
includes the cubic field but omits the quartic field a few more constants are generated. Users
should note that anharmonic corrections to the vibrational transition intensities require both a
quartic force field and a cubic dipole field, since both mechanical and electrical anharmonicity
contribute to the effect.

The authors will be pleased to hear from users concerning errors, suggestions for improve-
ment in style, or proposals for the evaluation of further constants of interest.
Andrew Willetts
Jefrrey F. Gaw
William H. Green Jr.
Nicholas C. Handy
University Chemical Laboratories
Lensfield Road, Cambridge CB2 1E\\I
U.K.
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Input Specification
1.6 The Main SPECTRO InPut.

L.6.1 Program control.
o The Keyword Input.

Uses FORTRAN unit 7. The current keywords are listed below. Each word should be
uppercase, separated by spaces from other words. Subsidiary information is read, within
one or two words of the keyword, to the left and then to the right. Anl' number of

. complete sentences, each ending with a '.', ffiay be typed on a line, but only one keyword
should appear in each sentence. (Commas have the same effect as periods.) Sentences
should not run from one line to the next. Blank lines are permitted. The keyword
END terminates the input. Any input not corresponding to a keywold or its subsidiary
modifiers is ignored b1' the program. This is useful for inserting comments in the input.

o Integer Input.
Uses FORTRAN unit 5. Input is in the form of 29 integers, 1-15 on the first line. in free
format, under SPECTRO.
These input methods are ent irel l '  equivalent.  Al l
5, is read under a, banner of the form # II{PUT
of data which fol lows.

input in the data f i le.  FORTRAN unit
##, where INPLTT indicates the type

o Example: to calculate the spectroscopic constants of ammonia from a quartic Caltesian
force field taking into account one 2:1 Fermi resonance, and to cont'ert the force field to
internal coordinates, one could use the following:

Q Format.

INPUT FOR AN,II\ ÍONIA. RUN CARTESIAN TO NOR\{AL TO INTERNAL.
READ ENERGY DERIVATIVE DEGREE FOUR.
INPUTTING A CARTESIAN GEON'IETRY.
THERE IS ONE FER\,{I TYPE 1 RESONANCE.
THERE ARE 3 STRETCHES. 2 BENDS. AND 1 OUT OF PLANE BtrND.
END OF INPUT.

An equivalent Integer Input in file 5 is:

* SPECTRO ##
0 0 3 2 010 4 0 0
0100000000

In both cases, the program instructions are echoed at the top of the output file to allow
easy verification.

0
0

0
0

0
0

0
0
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Keyrvords.
The overall "direction" of the progÌam must be specified with a key u'ord phrase containing
one of the following elements:
CARTESIAN NORN,Í AL INTERNAL
CARTESIAN NORN,TAL
INTERNAL NORN{AL
INTERNAL CARTESIAN
The first keyword in the phrase specifies whether the input fields will be in cartesian or
internal coordinates. Subsequent keywords specify the coordinate transformations to be
used. The order of these keywords is important. For example, the first phrase means
'read Cartesian input, convert to normal coordinates and then to internal coordinates"
(the same as setting Ncart:0). All of the other keywords follow a simpler grammar: one
keyword in each sentence, with its subsidiary words nearby (in any order). The current
keywords are:

Keyword - GEOil{ETRY

Subsidiarl '  -  CARTESIAN, INTERNAL, TAPE

Description - tells the program rvhere to find the geometry.
Always required. See Sec. I.7 and Igeom.

I(eyword - ISOTOPE, ISOTOPES

o Description - used to make an isotopic change.
Optional. See Sec. 1.10 and Isotop.

o Keyword - DERIVATIVE

o Subsidiarl ' -  ENERGY, DIPOLE, POLARISABILITY, HYPERPOLARISABILTITY [NUl\{-
BERI
Alternative - POLARIZABILIT\ ' ,  HYPERPOLARIZABILITY

Description - the degree of energy, dipole, polarisability or hyperpolarisabilitl ' derivative.
ENERGY DERIVATIVE is always required, all other derivatives are optional.
See Sec. 1.9, Sec. 1.17, Nderiv, Nprop.

Keyword - CONVERT

Description - changes the units and coordinate systems of the polarisabilities and hyper-
polarisabilities.

This is in preparation for the calculation of the vibrational contributions to (hyper)
polarisabilities.
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o

o

Keyword - FII,IITE

Description - calculates the nert geometr5' and potential in the pteserìce of att electric
field.
Currently used in the calculation of the vibrational contributions to (h1'per) polarisabil-
i t ies.

Keyword - POLAR

Description - calculates the vibrational contributions to (hyper) polalisabilities using
analytic formulae derived from perturbation theory.

Keyword - RAN{AN

Description - calculates properties of the Raman spectrum.

Keyword - PUNCH

Description - read the quadratic Cartesian force field in HONDO folmat.

Optional. See Sec. 1.9. (This corresponds to negative Nderir').

Keywords - STRETCH, BEND, LINEAR' PLANE, TORSION

Alternate Keywords - STR.ETCHES, BENDS, TORSIONS

Subsidiary - [NUN'{BER]

Description - the number of each type of internal coordinate.

Required if you are using internal coordina,tes in the input, or if you would like an internal
field in the output. See Nbond, Nbend' Nlbend, Nofpb, Ntors.

Optional. See Sec. 1.15.

Keyword - SYN'II\{ETRY

Description - use symmetry internal coordinates.

Required if you are using redundant internal coordinates. See Sec. 1.16. Isr,mm.

Keyword - RESTRICTED

Subsidiary - ENERGY, DIPOLE

Description - the specified input expansion is taken to be a restricted (Nielsen-type)
expansion. Can also be used for "unweighting" the inputs. See Sec. 1.18, Iparmf,
Iparmd.

Keyword - HAR.I\'IONIC

Description - reads in a new set of harmonic frequencies.

Optional. See Sec. 1.13, Nwfrq.

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

4
I
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o Keyword - FIT

o Description - performs a least squares fit (varying the harmonic frequencies).
Optional. See Sec. 1.24, I lsqrs.

o Keyword - ALIGN

o Description - allows the user to align degenerate modes.
May be necessary for spherical tops. See Sec. 1.23 and ldegnl.

o Keyword - CORIOLIS, FERN,II,  DARLING-DENNISON

o Subsidiary - [NUMBER], TOLERANCE, TOLERANCES

o Description - tells the program whether to account for resonances, and whether to adjust
the resonance-test tolerances. Optional, but indicated if resonances are strong. The
INUMBER] is used to distinguish between the two types of Fermi resonances. See Sec.
1.14, Icori l ,  I ferml, I ferm2, Idarl.

o Keyword - LABELLING

o Description - allows the frequencies to be re-labelled.
Optional. See Sec. 1.11 and Ifreq.

o Keyword - PROJECT

o Subsidiary - [NUI\{BER]

o Description - project out translation and rotation from the specified degree of the poterr-
t ial.  (Same as lrotrn - [NU\'ÍBER]).
Optional.

o Iiel'word - CURVILINEAR

o Description - allorvs for the use of curvilinear normal coordinates. (Same as Icurvq:1).
Optional. See Appendix E and Referencè 11. Before using this option. consult the
authors.

o Keyword - AVERAGED

o Description - calculates vibrationally-averaged properties. (Same as Iaverg=1).
Optional. See App. J.

o Keyword - REPRESENTATION

o Subsidiary - [NUMBER]



-

o Description - Defines how the principal axes are related to the original axes
e.g. Ir,  I Ir,  etc. Used in calculating the centri fugal distort, ion constants.
Optional. See App. H. (Same as Irep : INUN{BER]).

o Keyword - PRINTFILE, PRINT, PRINTALL

o Subsidiary - [NUltlBER]

o Description - PRINTFILE creates a new print file template, Sec. 1.12.
PRINT changes the amount of data printed ([NUMBER]:0 gives the least output, 2 the
mostl equivalent to Iprint.) PRINTALL prints all output.
Optional.

o Keyword - PLIVA

o Description - uses the nerv anharmonic constant formulae of Pliva [t3] for symmetric
tops. This can only be run from the keyword input. See App. K.
Optional. R.ecommended for molecules with high order svmmetry axes.

o Iieyword - TEMPERATLTRE, ['ION'{ENTUi\Í

o Subsidiary - [NUltfBER]

o Description - the temperature and the maximum total angular momenturn to use. (Same
as Itemp and N{axj). IVIOI\4ENTUIVI controls the number of rotational term values cal-
culated.
Optional.

o I{eyword - END

o Description - ends the input deck.

o Output Tit le.
An appropriate title can be given to any run of SPECTRO under the bannel TITLE.

Q Example:

* TITLE *#
H2O2DZP ANALYSIS

L.7 Geometry Input.

o Input of atomic positions and atomic numbers.

o Keyword - GEON{ETRY (Igeom).

o Subsidian' kevword - CARTESIAN.



O Format

# GEOM ##
Natom
che(1)
chs (2)

Ibohr
x(1) Y(1)
x(2) Y(2)

z(r)
z(2)

Chg(Naton) x(Hatom) y(Hatom) Z(Natom)

Natom is the total number of atoms in the molecule;
Ibohr specifies whether the geometry is in units of A1O) or aa(1);
Chg(n) is the atomic number of the atom labelled n;
X(n), Y(n) and Z(n) arc the cartesian coordinates of the atom labelled n.

Q Example: hydrogen peroxide geometry in ao with the trvo oxygen atoms specified
first.

# GEOM ##
47

8.0 -1.31323614
8.0 1.3L323614
1.0 -1.70920569
1.0 t .70920569

0.0 0.0
0.0 0.0

- 1 . 46340287
t .4634 0297

0 .  94913178
0 .  949 13179

Subsidiary keyword : TAPE.

Reads gcometry from fortran unit 10.
Same format as a,bove with out the banner.

Important note.
For correct results the Cartesian axis system of the force field must be identical to that
of the geometry.

Subsidiary keyword : INTERNAL.

Reads an internal coordinate geometry.
This cannot be used with a cartesian potential expansion.

@ Format

* ZMAT ##
Inum(1) Ianz(1) /
fnum (2) Tz(2, I )  81(2)
Inum (3) Tz(3 ,  1)  BI  (3)
Inum (4) T.z(4 ,  1)  81 (4)
0/

Ianz (2) /
fz(s ,2)  Atp (3)
rz(4 ,2)  AlP (4)

10

f anz (3) /
T.z(4,3) Bet (4) Iz(4 ,4)  Ianz (4.
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Inum(n) is an integer labelling the atom n;

Ianz(n) is the atomic number of atom n;

Iz(n,1) is an integer labelling the first atom to which a,tom n is directll'bonded;

Bl(n) is the length of the bond Inum(n)-Iz(n,1);

Iz(n,2) labels the next atom to which atom n is attached, this time not directly but
through another atoml

Alp(n) is the angle between the bonds Inum(n)-Iz(n,1)-Iz(n'2);

Iz(n,3) labels the atom which forms a dihedral angle with atom n;

Bet(n) is the value of the above dihedral angle;

Iz(n,4) normally has the values 0 or 1. If it is zero then Iz(n,3) and Bet(n) have the
definitions given above. Sometimes, however, it is simpler to use a second bond angle
to create a dihedral angle. Hence, if Iz(n,4) has the value one, then Iz(n,3) specifies the
nucleus for which the second internuclear angle, whose value is given b5'Bet(n). is given.
The final card, after completion of geometry input, is Inum(n) : Q.

o It is also possible to use dummy atoms b5'speciff ing lanz(n) : 0.

Q Example: hydrogen peroxide geometry witli the two oxygen atoms specified first.

# ZMAT ##
18/
2 1 ! .452 8 /
3 1 0.965 2 100.0 1 /
4 2 0.965 1 100.0 3 119.1 0 r  /
0/

1.8 Symmetric Top Rotation.

For symmetric tops we must align the molecular geometry to obev spectroscopic con-
vention. A rotation is performed to put one of the atoms (not the central atorn) on the
x-axis. This atom is specified in File 5:

Q Format.

* IROTN ##
fauto IatI Norder

Iauto is set equal to one to perform the automatic alignment. Iatl specifies the atom to be
rotated onto the x-axis. Norder is the order of the highest rotation axis in the molecule
(it should be negative if the highest axis is an improper rotation). For example Norder:3
for ammonia, but Norder:-4 for allene. For more information about degenerate mode
alignment, see section 1.23.

11



1.9 Cartesian Fields.

o This section describes the input of Cartesian force constants and dipole delivatives.

o Keyword - DERIVATIVE (Nderiv).

o Subsidiary keyword : ENERGY.

o NUMBER.
This section describes how the second. third and fourth derivative Cartesian force con-
stants are input. They should have atomic units (Hartree, bohr). Three numbers are

I I l .reao on eacn llne.
The Cartesian second derivatives (represented by the matrix FX) can be read in in two
formats.
(1). The f irst is the HONDO [10] format used by CADPAC. To use this format, use the
subsidiary keyword PUNCH (or set the value of Nderiv to be negative i .e., -2,-3.-4). Fi le
15, which contains the second derivatives, should be of the form

Q Format.

FX(J,3r-2) FX(J,3r-1) FX(J,3r)

i.e. in the order'

FX(1,1) FX(1,2) FX(1,3)
FX(2,1) FX(2,2) FX(2,3)

FX(N3N,1) FX(N3N,2) FX(N3N,3)
FX(1,4) FX(1,5) FX(1,6)

: l : : , - ,  
Fx(2,5) Fx(2,6)

J takes the values 1 to N3N rvhere N3N is equal to three times the number of atoms -
the order of  cartesia,n components is alu 'a.1 '5 1(x),  1(y) ,  1(r)  . . .  and not 1(x),  2(x)  . . . ;  J
varies most rapidly.
I takes the values 1 to Natom where Natom is equal to the number of atoms.
FX(J, Ii) is the value of the particular force constant.

T2
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(2). The Cartesian second derivatives should be in the order:

Q Format.

FX(1,1) FX(1,2) FX(1,3)
FX(1,4) FX(1,5) FX(1,6)

FX(1,N3N-2) FX(1,N3N-1) FX(1,N3N)

: i : :  
,  t ,  Fx(2 ,2) Fx (2 ,3)

o Third derivatives.
The input for the cartesian third derivatives in File 30 should be of the form

Q Format.

F33(1) F33(2) F33(3)
F33(4) F33(r3N3N)

where
/3^r3N _ N3N(N3^r + 1)(,^\I3N + 2)

6

that is the elements of the cartesian third derivative force field are stored in a one-
dimensional arral' whose index is computed from the three mode labels. The index for
the element l;j*, sorted so i ( j < k is given by

^.  ,  ( j  * r ) j  ,  ( f r_ l )k(k+ 1)
'= 2 -  6

o Fourth derivatives.
That for the Cartesian fourth derivatives in File 40 is of the form

O Format.

F44(1) F44(2) F44(3)
F44(4) F44(r4N3N)

where in a manner analogous to the third derivatives

/4,^f3t\I _ ^I3,^\i(/f3/ú 
+ tx^/3^r + 2Xlf3A'+ 3)

24

and the index is

u lu (k l )k(k + 1) ( t  -  1) / ( t  + 1)( /  + 2)
z024

13
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Dipole fields.

Subsidiary keyword : DIPOLE (Nprop).

NUIUBER.
Cartesian dipole moment derivatives are read in from the files belon':

Fi1e65
Fi1e66
F i  1e67

f i rst  der ivat ives
second der ivat  ives
third der ivat ives

A1(2)

All of the Cartesian dipole moment derivatives must be in atomic units. Note that the
dipole field must be expressed in the same coordinut" ,yrt"É-FttE[. fielcl; to use a
Cartesian dipole field, you must also input a Cartesian force field.

First derivatives.

A1(1) A1(3)
Diplc( I ,1)  Diplc ( I ,2)  Diplc( I ,3)

where A1(1), A1(2) and A1(3) are the three components of the equil ibrium dipole mo-
mentl Diplc(I,IX) are the three components of the first derivative u'ith respect to the
displacement I. I takes the values 1 to N3N; again the coordinates are in the order
1x, l l ' ,12,2x, . . .  not  1x,2x, . . . .

Second derivatives.

IX
Dip2c(I ,J, IX)

J takes the values I to N3N and varies the quickest, I also varies from l to N3N. The
data is read in three blocks, for IX:l ,2,3 (X,Y,Z).
Dip2c(I,J,IX) are the components of the cartesian second derivative.

Third derivatives.

IX
Dip3c ( I )

I takes the values 1 to I3N3N. There are again three blocks of derivatives for IX:1,2,3.
Dip3c(I) are the cartesian third derivative components. The index I is the index of three
mode labels defined on the previous page.

Polarisability fields.

Subsidiary keyword : POLARISABILITY.

L4



-

o Alternative keyword - POLARIZABILITY.

O NUIT{BER.
Cartesian polarisability derivatives are read in from the files below:

Fi1e71 f i rst  der ivat ives
FlLe7Z second derivatives

The first derivatives should be in the format:

o First derivatives.

A1 (J,1,1) A1 (J,1,2) A1 (J,1,3)
A1(J,2,1) At(J,2,2) A1(J,2,3)
A1(J,3,1) A1(J,3,2) A1(J,3,3)

where A1(J,1,1) is the first component of the derivative polarisabilitl ', i.e. oj,. J takes
the values 1 to N3N.

The second derivatives should be in the format:

o First derivatives.

A2 (J,K,1 ,  1)  A2 (J ,K , !  ,2)  A2(J ,K,  1 ,3)
A2 (J ,K ,2, ! )  A2(J ,K,2,2) A2 (J ,K,2,3)
A2(J,K,3,1) A2(J,K,3,2) A2(J,K,3,3)

where A2(J,Ii,l,l) is the first component of the second derivative polalisabilitl ', i.e. ojf'.
J and K take the values 1 to N3N.

o Hyperpolarisabilitl ' fi elds.

o Subsidiary ke1'11'e1d - HYPERPOLARISABILITY.

o Alternative keyword : HYPERPOLARIZABILITY.

o NUMBER.
Cartesian hyperpolarisability derivatives are read in from the files belou':

Fi1e75 f i rst  der ivat ives

The derivatives should be in the format:

o First derivatives.

15
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81(J,1,1,  1)
81( J ,2,  1,  1)
B1(J,3,1,1)
81(J,1,r ,2)
81(J,2,r ,2)
81 (J ,3 , r  ,2)
81(J,1,1,3)
81(J,2,  1,3)
B1(J,3,1,3)

where B1(J,1,1,1)
J takes the values

81(J,1 ,2,r)
B1( J ,2,2,L)
B1(J,3,2,r)
B1 (J,  1 ,2 ,2)
B1(J,2,2,2)
B1(J,3,2,2)
81(J,1,2,3)
81( J ,2 ,2 ,3)
B1 (J ,3 ,2 ,3)

is the first component
1 to N3I.tr.

B1(J,1,3,1)
B1(J,2,3,1)
B1(J,3,3,1)
B1(J,1,3,2)
B1( J,2,3,2)
B1 (J ,3 ,3 ,2)
B1(J,1,3,3)
B1(J,2,3,3)
B1(J,3,3,3)

of the derivative hyperpolarisabilit l ' . i.e. glr,.

1 .10 Isotopic Subst i tut ion.

This section describes the use of isotopes (other than the most common isotopes of each
element, which are the defaults).

I ieyword : ISOTOPE(Isotop).
The atomic masses listed under \ /EIGHT in file 5 are substituted for the default masses
of the specified at,oms.

@ Format.

* IÍEIGHT ##
Nchg
J r{(J)

Nchg specifies the number of isotopic changes to be made;
J labels the atom for which a different isotope is to be used;
W(J) is the value of the atomic ma,ss of this isotope in a.m.u..
The default values of the atomic masses used by the program are given in subroutine
DIST.

Q Example: to calculate constants for HOOD instead of HOOH.
* TIEIGHT **
1
4 2.0t4L0L779

1.11 Change Of Labell irg.

o Iieyword _ LABELLII'{G (Ifreq).

16



NUN{BER.
This allows one to label the frequencies according to anrv particular conventiorr. By
default, the labels increase with decreasing frequency.

Q Format.

* LABELS *#
IoId Inew

Iold is the old label;
Inew is the new label.

Q Example: to relabel fir'e modes, use the keyword sentence LABELLING FIVE
FREQS or in the Integer Input set lfreq:$. Then in File 5 put:

* LABELS #*
32
53
64
25
46

l .LZ Pr int  Control  Fi le.

I{eyword: PRINTFILE.
The output can be controlled by use of a print file, FORTRAN unit 8. First create
the template for this file by putting the rvord PRINTFILE in the ket'rvord input. The
program will then stop after printing the template in File 8. Tlie usel should then edit
File 8, inserting a character, e.B. (*), to the right of the output, data required. After
editing File 8, delete the keyword PRINTFILE in File 7, and run SPECTRO again. This
time the program will run normally, but only the desired output u'ill ìre printed.

1.13 l{ew l{armonic Fbequencies.

Keyword - HARII'ÍONIC.
This option allows for the input of a particular set of harmonic frequencies in a calculation,
e.g. experimental frequencies, to replace those calculated from the quadratic force field.
The input frequencies are in units of cm-l. In File 5 input:

Q Format.

* NTIFRQ *#
Freq(I)

I takes the values 1 to Nvib. A full set of new harmonic frequencies is read in.
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1,.L4 Resonance.

Keywords - CORIOLIS (Icori l) ,  FERlt{I(I ferml,Iferm2), DARLING-DENNISON (Idarl).

NUMBER.

Subsidiary keyword - TOLERANCES.
When SPECTRO is first run it will notify the user of any apparent resonances satisfying
the toleranc.es detailed below. If one wishes to take any of these into account, then the
code must be run again with the input specified in this section. Taking a l'esonance
"into account" means removing the relevant terms with near-zero denominators from the
perturbation theory. In simple cases the program also forms and diagonalizes some of the
matrices which result from treating the resonance interaction as an off-diagonal matrix
element instead of in the perturbation sums.

Q Format.

* FERMI1 ##
Nferml
Iv ib( i )  Jvib( i )
FtoI  1
F3toI

Nferml is the number of Fermi resonances of the type 2..'; - uj; i:1 to Nferml;
Ivib, Jvib are the modes involved in the resonance. All of the tolerances (e.g. Ftoll,
F3tol) need only be input if the keyword TOLERANCES (or, for exanrple, Iferml=2) is
used, and a,re <iiscussed belorv.

Q Example: stretch-bend resonance between mode 1 and mode 2 in u'ater

# FERMI1 **
1
2L

if you have input the keyrvord sentence FER\{I TYPE 1.

O Format.

* FERMI2 ##
Nferm2
Jvib( i )  Kvib( i )
Dft  o1
Dlt  oI

Iv ib( i )

Nferm2 is the number of Fermi resonances of the type cr.r; - ui * a* j # k;
where Ivib, Jvib, Iivib are the modes involved in the resonance and i:1,Nferm2.

Q Format.
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# CoRIoL #f
Ncor i  1
Ncorst  (  i  )
Iv ib Jvib f  axi  s
Ivk( i ,  i1)  ( i t=1,number
rvl( i ,  í2)  GZ=1,N2dm)
r11 ( i ,  i2)  ( iz=1,N2dm)
Ct o1
ZtoL

Ibxis Icxis
of l lolr-degenerate urodes )

Ncoril is the number of Coriolis resonances.

Ncorst(i) controls the vibrational states between which the matrix element of H21 is com-
puted for each resonance. If Ncorst(i):0, the matrix element between the fundamentals
is calculated by default,  and you needn't input Ivk, Ivl,  and I l l .  81'sett ing Ncorst( i):1,
you can specify vibrational states other than the fundamentals b1' speciff ing one of the
vibrational states with Ivk, Ivl, and Ill. Ncorst must be set to zero fol spherical tops.

i runs from 1 to Ncoril.

Ivib, Jvib are the modes in resonance.

Iaxis. Ibxis. Icxis take the value one if the resonance is about that axis.

Ivk(i,il) is the number of quanta in each non-degenerate mode;

Ivl(i,i2) is the number of quanta in each doubly-degenerate mode;

ill(i,i2) is the number of vibrational angular momentum qua,nta in eacli doubll' degenerate
mode;
Ivl and Ill should not b: input for asymmetric top molecules. At preseut onll' certain
types of Coriolis matrix elements are calculated for symmetlic tops.

The other vibrational state involved has the same vibrational quantum nuntbels, but one
more quantum in mode Ivib and one fetl'er quantum in mode Jvib.

For example, if you would like to take into account the effects of both S'ou could input
the keyword CORIOLIS and in Fi le 5:

Q Example: an A-type Coliolis l'esonance between modes 4 and 6 and a C-t1'pe Coriolis
resonance between modes 1 and 5 .'

# CoRIoL ##
2
0
461
0
150

For Darl ing-Dennison resonances:

O Format.
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# DARLING ##
Ndarl
Iv ib( i )  Jvib( i )
Ddt o1

Ndarl is the number of Darling-Dennison resonances; i:l,Ndarl;
Ivib, Jvib are the modes in resonance.

Q Example: a Darling-Dennison resonance in formaldehyde betrveen modes 1 and 5

* DARLING *f
1
15

Further testing for Fermi, Coriolis or Darling-Dennison resonances ma1' be done lvithin
certain restrictions by using the subsidiary keyword TOLERANCES (or b1'setting Iferml,
Iferm2, Icoril or Idarl equal to 2). Otherwise no tolera,nces need be input. The input
must then include tolerances for the selected type of resonance given b1':

For Coriolis resona,nce Ctol and Ztol.
These give the largest frequency difference and smallest Coriolis constant to be considered,
respectively;

For Fermi type 1 resonance Ftoll and F3tol.
Ftoll is the largest frequency difference betrveen the frequencies 2*'; and c,'i. F3tol is the
smallest cubic force constant to be considered connecting the frequencies in resonancel

For Fermi type 2 resonance Dftol and Dltol.
Dftol is the largest value of the energy denominator O;i6 and Dltol the largest individual
frequency difference of the type a;; - ui * a*. Note that an a,mended r,a,lue of F3tol,
the smallest cubic force constant considered, mav be set using the Felmi t1'pe 1 input if
required.

For Darling-Dennison resona,nce Ddtol.
For Darling-Dennison resonance Ddtol i, it 

" 
largest frequency cliflelence betu'een the

frequencies 2u; and 2ui.

Default
current

1.15

o I{eywords = STRETCH,BEND,LINEAR,PLANE,TORSION.

o Alternate l{eywords = STRETCHES,BENDS,TORSIONS.

values for all of these tolerances can be found in the subroutine RESTST. All
values of the tolerances are printed out in the output.

Internal Coordinates.
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NUMBER.
This section describes how a set of internal coordinates is specified for a molecule. The
number of internal coordinates to be defined is given by the value of Nbond + Nbend *
2*Nlbend { Nofpb * Ntors. This value may be larger than 3N-6 (or 3N-5 for a linear
molecule) if required by the definitions of symmetry internal coordinates. Sec. f .i6. That
is, redundant coordinates may be used. Note that you only specifS'one component of
each linear bend (the program knows that they come in pairs)'

Q Format.

* CURVIL **
Ibond(1 , I )  Ibond (2, f )
Ibena(1 ,  I )  Ibend(2,  I )  Iueua(3,  I )
I lbend(1, I )  I lbend(2, I )  t tbend(3,r)
Iofpb(1, I )  Iofpb(2, I )  Iofpb(3, I )  Iofpb(4, I )
I tors (1,  I )  I tors (2, Í )  I tors (3,  I )  I tors (4,  I )

Ibond labels two atoms between which there is a bond;

Ibend labels three atoms defining a non-linear anglel

Ilbend labels three atoms defining a linear angle;

Iofpb labels four atoms defining a plane; -> fht 'f r'/r J.;'-'

Itors labels four atoms defining a torsional angle.

The number of each internal coordinate to be read in is specified in the main input.
For an angle, the first atom input is the central atom (following Ho1', l\fills, and Strey's
convention [2]). All bond stretches must be specified first, then non-linear bends, then
linear bends, then out-of-plane bends and finally torsions.

Q Example: hydrogen peroxide, which has 3 stretches, two bends atld a torsion

* CURVIL #*
t2
13
24
t23
274
3L24

1,.16 Symmetry Coordinates.

o Keyword - SYIMÀ{ETRY (IsYmm).

This section describes how symmetry internal coordinates can be defined in terms of
internal coordinates. This input is required if redundant coordinates are used, and is

r'! K" *-c^^"À.I Jo"*-
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often convenient for comparisons with the spectroscopic literature. If this option is turned
on (with the keyword or integer inputs) one must put the input detailed belou' in File 5.

Q Format.

* SYMCRD ##
Isynn Ncrs Iscrs K

Isymm is the index for the symmetry coordinate that we wish to construct;
Ncrs is the number of internal coordinates used in this symmetry coordinate;
Iscrs specifies the number gf -cogrdinates used to make the symmetrl coordinate from a
linear combination of sy*ififfiffioordinatesl
K determines how the normalisation constants of the svmmetrv coordinates are to be
input when Iscrs f 0;

* Case
Iscrs : 0
The input file should be of the form
* SYMCRD #T
Isymn Ncrs 0 0

- Inorm lcrd(J)
0.0 I fact  (J)

J takes the values 1 to Ncrs;
Inorm determines the normalization constant, Fact, which is relatecl to Inolm bv the
expression

1.0F act

Icrd(J) are the internal coordinates that make up the symmetry cooldinate;
Ifact(J) is the wa1' these internal coordinates combine to form the svmmetrv coordinate,
i.e. the value of the factor multiplying each internal coordinate.

Q Example: hy'drogen peroxide forming symmetric and antisl'rnmetric stletch and
bend coordinates (see CURVIL on the previous page) would be

* SYMCRD *#
t200
223
0.0 1 1
2200
245
0.0 1 1
3100
11
0.0 1

{f

I norrn
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42
22
0.0 1
52
24
0.0 1
61
16
0.0 1

The cases discussed in the rest of this section are for particularly complicated forms of
symmetry coordinates used in specialized references.

0
3

-1
0
5

-1
0

* Case 2
Iscrs # 0
* SYMCRD ##
Isymm Ncrs
Nc (L)

I  scrs K

L takes the values 1 to Iscrs;

Nc(L) is the number of internal coordinates in each symmetry coordinate of the linear
combinat ion;

If I\
combination are input a,s real numbers;

If I{ - 0 then thev are input a,s integers;

If It > 0 then thel'are formed using P, Q and Ii (Cav molecul,:s onll').

* Case 2a
K
The input fi le must be of the form:
* SYMCRD ##
Isymm Ncrs Iscrs K
Nc (L)
Rnm(L) Icd(r , ; )
Temp I f t (L,J)
Inn Lincmb (L)

L takes the values 1 to Iscrs and J takes the values I to Ncrs.

Rnm(L) is the normalisation constant for each symmetry coordinate of the linear combi-
nation;
Icd(L,J) bre the internal coordinates that make up each symmetry coordinate of the linear
combination;
Ift(L,J) are the factors multiplying each symmetry coordinate of each linear cornbination;

svmmetrv coordinates of  the l inear
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Inm determines the normalisation constant of the linear combination of svmmetrv coor-
dinates under construction, given by

1.0 D0
Anorm:

Lincmb(L) denotes the particular linear combination of symmetrl'coordinates.
* Case 2b

K=0
The input file is of the form
* SYMCRD **
Isyuun Ncrs Iscrs 0
Nc(L)
rnn(L) rcd(L,J)
Tenp l f t (L,J)
Inm Lincnb(L)

Inm(L) determines the normal isat ion constant
combination

RnnT(L) _

where Inm(L) is,  of  course, au integer.

* Case 2c
K
\Ve use the P, Q and
appropria,te for Crt'
# SYMCRD *#
Isymm Ncrs
Nc (L)
Inm Icd(L,J)
Temp I f t (L,J)
Icdl  Tcd2
If  1 I fz
r fs r f6
Inm Lincmb (L)

Icdl and lcd2 determine the value of Ii where

for each s)'mmetry coordinate of the l inear

1.0 D0

K to define the normalisation constants ancl theu
molecules onll'. The input file is of the forrn

Iscrs K

If3 Tf4
I f7 I f8

nse values

-3sinBcosB
I i -

sirzo

where a and P are dependent upon lcd2 and Icdl respectively;

Ifl through to IfE determine the values of P and Q, given by

P:

I nnt

I nnt

I fL+If2*I i
I f3 + I f 4 * Iiz
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a- If5+If6*/ í

Lincmb(L) are the factors of the symmetry coordinates of the linear combination.

1-.LT Internal Coordinate Fields.

This section describes the input of force constants and dipole derivatives in internal coor-
dinates. These inputs are read if the main keyword phrase (section 1.6) is 'INTERNAL
NORN{AL'or ' INTERNAL CARTESIAN'. The internal coordinates in SPECTRO are
always in A, units for bond stretches and dimensionless units (e.g. radians) fol the other
types of internal coordinates.

Keyword : DERIVATIVE (Nderiv).

Subsidiary keyword - INTERNAL.

Subsidiary keyword : ENERGY (Ncart).

NUMBER.
This section describes the input of quadratic, cubic and quartic force constants in internal
coordinates.
For second derivatives:

* F2INT
Nread
IJ

##

F2

For third deri\ratives:

# FsINT
Nread
IJ

##

F3

And for fourths:

# F4INT
Nread
IJ

##

F4

where Nread is the number of force constants of each order to be read in;

I, J, K and L are the internal coordinate labels ranging in value from 1 to the total
number of internal coordinates;
F2, F3 and F4 are the values of the second, third and fourth derivative force constants
pu, pdjÈ, and FdiÈI. If symmetry coordinates are being used they are instead F;j, Fijr,
and F;;61. The energy units are mdyne*A:attojoules. Note that you should input only
one of the permutation-related derivatives, e.g. under F2INT enter oulr':
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o

o

3 4 0.543
not
3 4 0.543
4 3 0.543

Though SPECTRO knorvs that
not know any other symmetries.
quadratic force constants F"" in

Subsidiary keyword _ DIPOLE

NUI\,fBER.
A full cubic dipole can be input

permutat ions of indices don't  change derivat ives, i t  does
Therefore you must input al l  three NH bond stretching

ammonia for example, even though thev are equal.

(Nprop).

in internal coordinates as follows:

# DIPEQ ##
DIPEQ ( 1) DIPEQ Q) DIPEQ (3)

# DP1INT ##
Nread
I DPlINT(I ,1) DP1INT ( I  ,  2)  DP1INT ( I  ,3)

# DP2INT ##
Nread
I J DP?INT(T;,1) DP2INT (T;  ,2)  DP2INT (  r ;  ,3)

# DP3INT ##
Nread
I J K DP3INT(T.IK,1) DP3INT (  r . lX ,2) DP3INT(T;X,3)

where Nread is the number of constants to be read in;
I, J and Ii are the internal coordinate labels;

l, 2 and 3 are the directions;

DIPEQ, DPllNT, DP2II{T and DP3INT are the equil ibrium and dipole derivative values.
Dipole moments are in atomic units, internal coordinates are in A (for bond lengths) or
are dimensionless (for angles). If you are using symmetry coordinates. the derivates read
here are with respect to the symmetrized internals.

L.18 Restricted-Summation Taylor Expansions.

By default all of the expansions are unrestricted, as recommended in Ref. 2. Hou'ever,
much of the literature uses restricted summations, 

".g. 
i S j I k. This option allos's one

to use these sorts of constants, i.e. when this option is switched on. the progra,rn begins
by converting the input into the unrestricted constants used inside the program. Also,
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sometimes "bond-length weighted" bend coordinates a,re used instead of the internal
coordinates used in the program. This option allows one to undo anv lveightings or
parameterizations in the input force or dipole fields. It can also be used to cope with
strange unit systems. The RESTRICTED option can onll' be used u'hen starting from
an internal coordinate field.

o Keyword - RESTRICTED (Iparmf,Iparmd).

o Subsidiary keyword - ENERGY.
This section allows for restricted summations or scaling factors in the potential expansion.

O Format.

* PARMF #*
Nielsn NcordP
Icordp(I)  Param(I)
Totp

I t  otp

Nielsn is a positi.i'e! non-zelo integer if the summations are restricted:

Ncordp is non-zero if some of the coordinates are weighted and sonte are not. Then it
gives the number of coordina,tes to be unweighted;

Icordp(I) is the coordinate to be unrveighted;

Param(I) is its weigliting factor'. Both Icordp(I) and Param(I) should onll' be given if
Ncordp > 0. I runs from 1 to NcordP.

Itotp is non-zero onlf if all weighting factors are themselves to be divided bv a cotnmon
factor; Tctp is the value of this factor. Totp is only required if Itotp > 0.

Subsidiarl' keyword - DIPOLE.

The format is identical to that for an energv field, except the ba,nner is PARI\'ID.

1.19 Vibrat ional states.

Calculates the vibrationaì energies of specified states. 81' default the code evalua,tes the
energies of fundamenta,ls, two-quantum combination bands and first overtones.

Q Format.

* VIBSTS *#
Nst ate
I lsts( I ,Nst)
I2sts( I ,Nst)
I ls ts( I ,Nst)

I=1,N1dm (number of  l ro l l -degenerate modes)
I=1,N2dm
I= 1 ,  N2dm
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Nstate is the number of vibrational states to be read in; Nst:1,Nstate;
Ilsts contains the quantum numbers of the non-degenerate modes. I2sts contains those of
the doubly degenerate modes and Ilsts the values of the vibrational angulal rnomentum
quantum numbers. I2sts and Ilsts are required only for symmetric tops.

Q Example: to evaluate the second, third and fourth overtones of the fourth mode of
a six-mode asymmetric top

* VIBSTS **
3
000300
000400
000500

1.20 Vibrat ional band intensit ies.

SPECTRO allows calculation of the intensities of vibrational bancls, given input dipole
moment fields, by the second-order perturbation theory formulae present,ed in Reference
12. This option is switched on automatically by using the keyword DIPOLE (or. b1-setting
the-Integer Input variable Nprop non-zero) and inputting at least a quach-atic Cartesian
dipole field. follorving

Q Format.

# INTEN *#
Iread fcrrrd
Vx
Toler1 To1er2

Iread instructs the program to read a new normal coordinate dipole field if set non-zero.
Normallf it is set to zelo.
Icorrd is set equal to one if one u'ishes to account for the Cor.iolis term in the intensitv
calculations! zero otherwise.
Vx is the init ial number of quanta in the mode which is changing in the transit ion.
Normally this is set to zero. However, this can be used to calculate some hot-band
transition dipoles by setting non-zero.
The two tolerances, Tolerl and Toler2, determine the cutoff point for resonance denom-
inators in the intensity formulae. Tolerl applies to type I resonance and Toler2 applies
to type 2 resonance. The test performed is:
Resonance denominator ( Toler * Cubic force constant
Typically, Tolerl and Toler2 should be about equal to unity.
The first, second, and third derivatives of the dipole moment with respect to the Cartesian
displacements must be input in file numbers 65, 66 and 67, using the fonnat specified in
Sect.  1.9.

28



-

The At' :1 and 2 transition dipoles are calculated. For the convenience of the user,
some of these are converted to the corresponding integrated band intensities, though this
conversion involves some approximations, as discussed in Reference 12. The program also
does all the coordinate conversions on the dipole moment field that it does on the force
field; in particular, one can use the program with the keyword sentence RUN INTERNAL
TO CARTESIAN (lnteger Input variable Ncart=5) to convert an internal-coordinate
dipole moment field to a Cartesian field, and then run the program again, with the
keyword sentence RUN CARTBSIAN TO NORN'{AL (or Ncart =0, I or 99) to get the
intensities. This would be necessary because it is not possible to run the intensity routine
from an internal dipole field.

1.2L Electr ic Field Input.

o Input of cartesian components of the electric field.

This is required whenever the keyword FINITE is used. All three components of the field
are input.

Q Format.

* FIELD *#
FLD(1) FLD(2) FLD(3)

1.22 Degenerate Mode Labell ing.

Defines a labelling scheme for the vibrational modes.

This input is required whenever a molecule with degenerate modes is
symmetric and spherical tops.

Q Format.

* DEGMODE #f
Nldm N2dm N3dm
Ilrnode(I)  I=1,N1dm
I2mode(I ,1)  f=1,N2dm
I2node(I ,2)  I=1,N2dm
I3mode(I ,1)  I=1,N3dm
I3node(I ,2)  I=1,N3dm
I3mode(I ,3)  I=1,N3dm

Nldm is the total number of singly degenerate modes;

N2dm is the total number of doubly degenerate modesl

N3dm is the total number of triply degenerate modesl

Ilmode(I) labels the Ith singly degenerate modeq

29



-

I2mode(I,l) labels one component of the Ith doubly degenerate mode:
I3mode(I,l) labels one component of the Ith triply degenerate mode.
Referring to appendix I(, I2mode(I,1) is the 'a' component and l2mode(I,2) is the 'b'com-
ponent.  I3mode(I , l ) is  the'x 'component,  I3mode(I ,2) the'y 'component and I3mode(I ,3)
the 'z' component.
The total number of modes (3N-6 or 3N-5) is Nldm*2*N2dm*3*N3dm.

1.23 Degenerate Normal Coordinate Alignment.

o Keyword - ALIGN (Idegnl).

o Symmetric and spherical tops only.
Takes linear combinations of the degenerate mode components to form new modes rvhich
are oriented according to convention (see appendix l{).Under normal circumstances it
will not be necessary to use this option for symmetric tops as automatic mode alignment
can be performed. For automatic alignment, do not use the keyrvold ALIGN (if using
Integer Input, set Idegnl=0). The automatic alignment routine considers modes which
difrer b-v less than 0.05cm-r degenerate. Automatic alignment is done using the IROTN
banner in File 5; for details see section 1.8.

In some cases however it lvill be necessary to use manual alignment, for exanrple for
spherical tops, or for symmetric tops with peculiar symmetries such that no reflection
plane runs through an atom off the highest-order symmetrl'axis. N{anual alignment is
very tricky - it is recommended that trsers contact the aulhors in case of difficulty.
t he direct effect of manual alignment is to change the LX and LX\I matrices; this
indirectly affects virtually all of the spectroscopic parameters. The desìred form of the
LXN'Í matrixelementsfor thespecif ied modes, atom, and x, y aî z conlponent ( ix: l ,2,3)
are given in Icord(ix,imode,I), where I is the index running over the Ndegn different
degeneracies in the molecule.

Q Format.

* DEGNL
Ndegn
Nmode ( I  )

then, for

##

Iatom(I)

a doubly-degenerate mode (Nmod"(I):2)'

ix
fmode(r, I )  Imode(2,Í )
Icord( ix,  1,  I )  Icord( ix,  2, Í )

while for a tr iply degenerate mode (Nmod.(I):3) '

30



-

hnode(1, I )  Inode(2, I )  Inode(3, I )
Icord(1,1, I )  Icord(! ,2, I )  Icord(1,3, I )
Icord(2,1, I )  Icord(2,2, f )  Icord(2,3, I )

This input is repeated for I values from 1 to Ndegn.

Nmode(I) is the degree of the Ith degeneracy;

Iatom(I) is the index of the atom whose motions will be considered in fixing the alignment;

Imode contains the labels of the modes involved in the degeneracy.

Only the x and y components of one atom's motion need be specified to fix a triply
degenerate mode, and only the single ixth component need be specified to fix a doubly
degenerate mode. Icord needn't be normalized, but at least one of the LXI\4 matrix
elements corresponding to the atom, ix component, and modes specified must be non-
zero. Users have reported difficulty with spherical top alignment; consult the authors for
the latest suggestions.

1.24 Least squares fitt ing.

I(eyword = FIT (Ilsqrs)

This allows for the ha,rmonic constants to be least squares fitted to experimental vibra-
tional band origins, using ab initio anharmonic constants.

The File 5 input is given below for asymmetric tops and symmetric tops. Users wìshing
to least squares fit spherical tops should first consult the authors'

N.B. The authors believe that this is not the b:st way determine harmonic frequencies,
since it does not use rotational and isotopic information.

O Format.

# LSQRS ##
Nst s
Ist  Eng(I) Iw
I lsts (J, I )  J=1,N1dm
I2sts (J,  I )  J=1,N2dm
Ilsts(J, I )  J=1,N2dm

Nsts is the number of experimental band origins to be used;

Ist labels a particular state;

Eng(I) is its (experimental) energy above zero point;

Iw should be set to zero;

Ilsts is the number of quanta in each non-degenerate mode;

I2sts is the number of quanta in each doubly degenerate mode;
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Ilsts is the vibrational angular momentum in each doubly degenerate mode; Both I2sts
and Ilsts are only required if the number of doubly degenerate modes is greater than zero.
I varies from 1 to Nsts.
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Appendix A

Analytic Derivatives in Quantum
Chemistry.

Gradient theory is arguably the greatest advance of quantum chemistr5'in the period 1970-85.
We draw attention to the follorving significant papers:
(")  P.Pulay,  Mol.  Phys.17,197 (1969).

A presentation of analytic energy gradients (first derivatives) at the Self Consistent Field
level.
(b) J. A. Pople, R. I ir ishnan, H. B. Schlegel and J. S. Binkley, Int. Journal of Quant. Chem.
Sy-p. t3,225 (1979).

A presentation of analytic energ)' second derivatives at the Self Consistent Field level.
(.) J. F. Gaw, Y. Yamaguchi and H. F. Schaefer, J. Chem. Phys. 81, 6395 (1981).

A presentation of analytic energv third derivatives at the Self Consistent Field level.
(d) N. C. Handy and H. F. Schaefer, J. Chem. Phys. 81, 5031 (1984).

Where it was shown that, for correlated wavefunction calculations, the full set of (3N)
coupled equations do not need to be solved.
(e) N.C. Handl ' ,  R.D. Amos, J.F. Gaw, J.E. Rice, E.D. Simandiras. T.J. Lee, R.J. Harrison,
G.B. Fitzgerald, and R.J. Bart lett,  NATO ASI Series, 166, 179 (1985);
N. C. Handy, R. D. Amos, J. F. Garv, J. E. Rice and E. D. Simandiras, Chem. Ph1's. Lett.
120,151 (1985).

A presentation of a.nalytic eneÌgy second derivatives at t,he lrfP2 level.
The development of these ba.sic idea.s to more general classes of u'a,vefunctions has been aided by
distinguished contributions from many leading scientists-several review articles have norv been
written. The situation is therefore that it is possible to determine, by anal1,'tic means, first,
second and third derivatives of the energy, with respect to nuclear coordinates, b1' a variet-v
of. ab initio wavefunction methods. It will soon be possible to calculate fourth derivatives by
analytic means, although today we calculate them by finite differences of third derivatives.
By a similar method, up to third derivatives of the dipole moment with respect to nuclear
coordinates may be calculated. Thus, in principle, the ab initioist. may calculate the following
forms for V and p

v : +D,fo, ArrA*r + | I fo,- I x x Lx t Lx * * àD f p1^n Lr 1, L:r:;ar- at' (A.1)

33



-

to :  t7+f p[ar-*  ] Ipî ,a"^.arr  + [ I r f , -or6aa,1a*- (A.2)
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Appendix B

Perturbation Theory in Spectroscopy.

For many years, leading theoretical spectroscopists have also been attempting to derive values
for the potential energy and dipole derivatives in equations (A.1) and (A.2). Their approach
has been from the other end of the problem, that is from experimental infrared spectra. Their
principal difficulty is the lack of sufficient data to determine all of the constants in equations
(A.l) and (A.2). Accordingly, their approach essentially involves an approxima,te deternination
of the spectrum for assumed values of the constants in (A.1) and (A.2), and refinement by the
method of least squares. The traditional approach has been to use second-order perturbation
theorl', built on the harmonic-oscillator/rigid-rotor approximation, and this is the approach
used by SPECTRO. The starting point is one of Slatson's forms [1] for the kinetic energy
operator in normal coordinates. For example

S2î :Tt,Fag(i ,  r ' )  ( io frp) fn ' t  t too T+
a2 (8.1)oQ u'

and the a,bove representations for Y and 11.
This perturbation theory leads to expressions for observable spectroscopic constants in

terms of the deriratives ab initioists can provide. In principle the derivation of these formu-
lae is straightforwa,rd, but the algebra is complex and there are many subtle points. I\{any
spectroscopists have contributed to the development of this theory ovel trìanv years, and work
continues to the present day. Much of this resea,rch is summa,rized in Ref. 6.

It is important to be aware of the situations where the perturbation theorl' approach
breaks down. First, the Born-Oppenheimer approximation must be valid. so. for example,
the approach may fail if two electronic surfaces intersect in the vicinitv of the equilibrium
geometry, as in the Renner-Teller molecule CO2+. Second, the approach assumes that the
molecule is fairly rigid and that the potential expansion is rapidly convergent; it \\'ill fail
for floppy complexes, quasilinear molecules, and if there is a large amplitude motion such as
an internal rotor. Third, the perturbation theory formulae fail if there is a resonance, i.e.
if interacting states of the same symmetry have similar energies. I\{ethods for dealing with
resonances are discussed later.
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Appendix C

The geometry, force field and dipole
field.

To perform an anharmonic vibration-rotation analysis, the program could use follou'ing data:
(1) the masses m; and cartesian coordinates of the equil ibrium geometry, r!o(a: x,y,z),for
each of the N nuclei;
(2) the cartesian displacement force field V given to quartic level b5,1

1-.  ^ 
1

V -  ; I  " fnA"oA",  + ;  L fom\t lAr lAr-  *  nDÍr- , - \ r rAa'1-\r-Arn

with respect to local cartesian axes.
(3) for the prediction of infrared intensities, a dipole surface is required

t f  :  t?+!p[ar-  *  ] Ipî ,arua'r  + [Dui , -ar1.Ar1-\r-  (c.g)

Note that all the summations in this manual are unrestricted unless stated otheru'ise.

(c.1)

where the Arr (k-  1,  2, ., 3N) denote the 3N cartesia,n displacement coordinates defined by

rak -  rZx (c.2)
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Appendix D

Tl"ansition states

It is possible to use SPECTRO to calculate the spectroscopic constants of a molecule at a non-
degenerate transition state. When the program finds a single negative force constant, greater in
magnitude than 0.001 then it uses amended formulae to calculate the vibration-rotation

interaction constants.ndmhurmonic constants. These allow for the fact tliat one frequency is
imaginary. An indication is provided in the output when a transition state calculation is being
performed.
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Appendix E'

Curvilinear internal coordinates.

Instead
internal
denoted
by

.s;- f  BfArr+i f B!'LqrArr +

[2] for:The s; ha,ve been defined b1' Hoy, I\{ills and Strey
(u) bond stretching (between atoms a and b)

r : l " l  -1""1
(b) angle bending (atom a bonded to atoms b and c through vectors ri and r;)

s : arccos l:r:tl _ arccos fry)
\ t; t ,  /  \  , ir i  /

(c) linear angle bending (atoms a, b and c all collinear)

/ r1 A r ; \
s:€A 

\ ;*  /

,  :  ( " i ' " . i  n tu1
\ r;rir6 /

(e) torsion r (atoms a and b linked by ri, b and c by r3 and c and d by 
"r )

s :*arcsinl  " t ' , " ,1"I  .  ) -"( ' )^' \r;r;16 sin d;3 sin d;* )

3E

of cartesian displacement coordinates, it is often more convenient to use curvilinear
coordinates s; ( i  = 1,2,.. . ,3N - 6(3N - 5 for l inear molecules)). (The si are frequently
by a backwards R, the Cyrillic letter "y"h".) They are represented in terms of Arl

(E.1)

(E.2)

(8.3)

(E.4)

where ea is a vector perpendicular to the plane of vibration containing r; and r5
(d) out-of-plane bending (atoms b, c, d and a coplanar with a being the central atom connected
to b, c and d by the vectors ri, 15 and 11 )

(E.5)

(E.6)

or the related formulae given by Hoy, Mills and Strey [2].
The potential energy may be expressed in terms of the curvilinear internal coordinates s

1 _ :_.  1
V-=IFdrs;s i+

2t-t-  
-Ú-r  '6 (8.7)
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Appendix F

Normal coordinates.

Normal coordinates, denoted Q, are derived from the eigenvectors of the mass-weighted carte-
sian quadratic force constant matrix given by:

11
m 7fm-2

and thus
Ar l  :  lmoi  qq" ( f r  = 1,2, .  .  .  ,3^t)

Qn: l t !^ iAr* (nz = 1,  2, . .  .  ,3N -  6)
In these coordinates the potential is

(F.1)

(F.2)

(F.3)

If we write V in
bv

v_ l  f  ^ ,e?+ àf  
prst  e,e,e,*  * t6rstu e,e,e,e,

wavenumber units, and introduce dimensionless normal coordinates q

1

(2ncu,1i  .q ' :  ( .?) Q'
then the form for V is

r , /  :  i  f  a,q?+ 
àf 6rstQ,Q,QI *  * t  6rstuQ,Q,QIQ, (F.6)

where (rr are the harmonic frequencies'
At this stage it is also convenient to write the relation between s and Q:

s;  _ t  L:Q,+ i f  L] 'Q,Q" *  àf  L:" 'Q,Q,Q,+ "  ' (F.7)

which defines the L tensor. Formulae for the L tensors for the cases of Appendix E ale given
in Hoy, Mills and Strey [2].

(F.4)

defined

(F.5)
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where the

Appendix G

Symmetry coordinates.

For a molecule with symmetry, combinations of s; may be derived which transform according
to the irreducible representations of the group. Symmetry internal displacernent cooldinates
are thus written

g, : f U/si

is defined separately for each molecule. In terms of S;, V is expressed as

(G.1)

v - * f F;is,T + à f F;rr,s;s;^sr + * f F;i,,r s,si,sÀ,ei (G.2)

where F;; is only non-zero if i and j belong to the same irreducible representation of the point
group, etc.. The symmetry coordinates S are related to the norma,l coordinates Q through

,e; - I uti Q,+ i r M{' Q,Q,+ à r rvi,,Q,Q,Q,+ . . . (G.3)

where N{:UL. Symmetry coordinates should be used when the ordinar}' internal c.rordinates
would be redundant.
Symmetry coordinates are commonly used in the spectroscopic literature, particularll'for sym-
metric top molecules. The conventions for C3, symmetry coordinates are:

the components of degenerate modes are symmetric and antisymmetric u'ith
respect to a plane through ABC, where A is the central atom, C lies along
the Ca axis (the Z axis) and B l ies in the XZ plane.

In SPECTRO analogous conventions are used for all symmstric-top degenerate modes and the
components are aligned this way automatically.

UÍ

40



-

Appendix I{

Anharmonic effects in the vibrations
of asymmetric top molecules.

(a) Anharmonic constants and fundamental frequencies.
For an asymmetric top (a molecule with no degenerate vibrations), the vibrational energy

levels are given by

E( ' , r )  -  Iu,r6(u6 + * l  + I  rxt(ro + ] ) { . , ,  + * l  + " '
') &<l a' -

So the f,tnd.mental frequenc)' u; is given by
1

u;-Q;*2r, ,+: \ -ii 1- , L- r;*
&) k* i

(H.1)

The anharmonic consta,nts are given b)' R,ef. 3:

Ír.r-f idnuo* GI (ouo''r '  (
\

3o'^ \
- r i l )

6kkm 5ttm (óxt*) 'o*(oî*r? -nL) + B,(( f / ) ' { l  + * l  (H.4)

Sri
u)m$r'o - l, l -*m

(H.2)

(H.3,

* or -  t - )  (H.5)

(H.6)

1îr t_ ;óru ' t  -  I
+ rrl

where we have used

f)rt* _

Bo are proportional

leading to

4ro* t 2CI ktm

(rr *  ut  *  u^)(-ru * wt * a*) (ro -  e1 * t - t*)  (rr

to the reciprocal moments of inertia, given b1'

, ,ehua 
Ezr2 cI&

and (fl are the Coriolis constants derived from I by writing equation (F.2) as

Aro; = *;* Dry,,Q, (H.7)

(H.8)$o- P 
It,,BI!,^, - It,"l!,p
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It is appropriate at this
a principal axis frame. This

time to discuss the transformation from a cartesian axis frame to
can be achieved in six different wavs. namelr':

1.  I r
2.  I I r
3.  I I I r
4.  I I
5.  I I l
6.  I I I1

for Xrt and

A
A
A
A
A
A

B
B
B
B
B
B

c
c
c
c
c
c

Each of these is a different representation and if a particular one is desired it can be selected
by using a keyword phrase like REPRESENTATION FIVE or by setting the value of Irep in
the main input to the representation required. The default representations are:
for asymmetric tops and prolate symmetric tops - Ir;
for oblate symmetric tops - IIIr.
(b) Anharmonic resonance.

Fermi resonance occurs whenever 2"ss - Qm ot us* * q - u)m (or similar). SPECTRO will
issue a warning if particular interaction appears to be resonant. If there is a Fermi resonance,
following Califano [4], after writing the relevant terms in partial fra,ctions, the divergent term
is removed from x16 and xp1, which mea,ns that the relevant terms are replaced b1'

ó'uu^ ( t +I
4 \2r,, 

I (H.9)
8(2u,'6 + u* )

(rr*q**^) (rt * to* - c"'t ) ( r r  - ' " .p **r , )
++

for xs1. A 2 b1' 2 matrix is then constructed for which the diagonal elements are given by the
modified x6s and xp1, and the off-diagonal elements are given by

\

(" .g .  l )1rr t ) l ru*:  0,  0,  1)  or

(H.11)

)tu\

( ro + 1)(t '1'  +

)( . ' r  + 1)u*(u* +

2)r*

1
E )*

)  
(H 10)

(H. 12)

(".g. ,r, nm : 0, I ). In this way, the effects of Fermi resonance may be taken into a,ccount for
both the fundamentals and overtones. If a single state is involved in more than one resonance,
the user must diagonalize the larger matrix separately, but SPECTRO will plovide the required
matrix elements.
(c) Quartic and sextic centrifugal distortion constants.
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The effective rotational Hamiltonian, H"o1, may be expanded for a rotating molecule as

H,or :D g,i',+ f t ro,1fii;i; + i;iiig (H.13)
P+q+î

I fn(=p+q*r) isequal tofour, thenthehon"arethequart iccentr i fugaldistort ionconstants
and, if n is six, then they are the sextic distortion constants. Symmetrl' considerabll' reduces
the number of independent hoo".

where

in which

An explicit expression for oîP is

aB
ap

(H.14)

(H.15)

(H.16)

(H.17)

(H.20)

(H.21)

(H.22)

The basic form of the relevant quartic centrifugal Hamiltonian is

1.
Ht = |Lr,o.,ti"igi.,iu

- f aB rdo'k ak
Tagt6 :

Zhcl" lpl.rI6 )r

ag (w\aP:\aar) '

written in terms of L as follorvs

, /  \_ 2Lnt l6"oIt:r/l-, - rlolfo l
i\1 /

Equation (H.14) is often written

Ha- -Drin -  nr,r i ' i? -  D,r i !  +a' i 'Q'*+ i \+ar1i l+ i?l  (H. ls)
It may be shown that a convenient wary to express H"or uP to sextic terms is as follon's

H,ot :  DB"i :+DT,Bi3i f i+Lo,, , i3 (H.19)
*L,+p a,,pú:i3 + iSiiy + o,y"Q:ili? + i3 iîiyl

The sextic constants O, besides involving r, also involve the third order force constants

ót^n. General expressions for T and O may be found in Ref. 5, for example

T -1-
'Qa - 

4tùdoù

ToB: l ! ,opp*rppoo)
4

The usual representation of the sextic Hamiltonian is

Ho _ Htiu + HtxiaJ? + Hxti'Jî + HKJ: + ntin]l+ ii)

+f,n,*i'1i:fii + i?)+ (ií + i?\ii\
I ^_ ^^+|n*tilti i + i\+ (ií + i?lii\

Expressions for the sextic distortion constants H.l, H.lx, Hr.l, Hr, h.l, h.rr, and hri' are given
by Aliev and Watso" [5].
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Appendix I

Vibrational d"pendence of the
rotational constants.

Following Papousek and Aliev [6], the vibrational dependence of the rotational constants is
given by

B' i :  Bb- f  *Pn(,r  *  l l
k't

where

SPECTRO again
replacements and

'G':Y4I; +I

(I .1)

e*xrof '+Ì (I .2)
uf)

(In the case of a strong Fermi resonance (Zap - arl), Papousek and Aliey suggest the term
involving /66; should be eliminated, but this has not yet been implemented in SPECTRO.)

If there is a Coriolis resonanc" (ru -r,,'1), the second term must be replaced b5'

'  \nul  , t t (qaru) ( I .3)

and that the resonance itself should be treated by the construction and diagonalization of a
matrix of the rotational states of the trvo coupled vibrations, with

1u1,,tt lElrp + 1, ui - 1 >: i€| , , ip (L4)

( r )  *)  ( ( ' r+r)" , )à (rb)
\cr ' r l  /  \  4 /
appears to be a resonance,, and can do all the

€r,,: zBfi(ft( (;)- +
will issue warnings that there
form the ma,trix elements.
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Appendix J

Vibrationally averaged interatomic
distances.

It is usual, following Mills [7], to define the average internuclear distanc€ as ls: and the distance
between average nuclear positions as ra, where

r ie-  r ie +Y, f i

Q,

Tia_ r ; ,  *L,  f :

2r an,
/^t

I r

used in App"ndix F to from normal coordinates

with

and

where

J.
where 'yi is the fact,or
normal coordinates.

1.
4)(r, +

1.
))

(J 1)

(J.2 )

(J.3)

(J 4)

(J.5)

to dimensionless

ft

go
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Appendix K

Symmetric tops.

A molecule with two equal moments of inertia and one different is called a symmetric top. If the
unique moment of inertia is zero then the molecule is linear. All symmetlic top molecules have
at least a three-fold axis of rotation. Linear molecules belong to the point groups Coo, or Doo6.
Solution of the vibrational problem leads to pairs of normal modes with identical frequencies
belonging to the E representation known as degenerate modes. Any linear combination of
these modes is itself a normal mode with the same frequency and hence some convention for
the modes must be adopted. Normally the degenerate modes are chosen to be sr-mmetric
(labelled a) or antisymmetric (labelled b) with respect to a C2 axis or o., plane. T|e choice
is usually dictated by which operation is present in the group. A linear molecule along the
z-axis has, by convention, one normal mode in the x direction (a, symmetric) and one in the
y direction (b, antisymmetric). For symmetric tops, this alignment is achieved b5' specifying
which atom you wish to put on the x-axis.

The vibrational energy of a symmetric top is of a similar form to that of an a,s1'mmetric top
except that degenerate modes are treated separately from non-degenerate ones and vibrational
angular momentum becomes important. Equation H.1 for asymmetric tops therefole becomes

E(v, / )  :  
Tr"(r ,  + ] l+ \ r , ( r ,+ 1) + ! , ' " " , ( . , ,  + j ) t "" ,+ ] l
*f  o"1(u" + ]Xr, + 1)+ Drru(ur* 1)(u,,  -1- 1)

t ' f  -  t<t ,
(K.1)

+lo", IJt ,* . . .
tst'

where s denotes a non-degenerate and t a degenerate mode. The term 11 is the vibrational
angular momentum of the degenerate mode t and takes values

*ut, t ( r r  -Z), . . . ,1or 0 (t{ .2)
Extra terms are also introduced into the vibration-rotation interaction due to the degenerate
modes. The reader is referred to Ref. 3 for more information. Recently, Pliva [13] has pointed
out that the standard formulae for some anharmonic constants omit terms that are non-zero for
molecules with four-fold or higher symmetry axes. The new formulae are used if one specifies
PLIVA in the Iieyword input.
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Appendix t

Spherical tops.

A molecule with three equal moments of inertia is called a spherical top. I\{olecules of this
type belong to the cubic symmetry groups T, Ta, O and Ot. We will be primarilf interested
in-those belonging to the Ta group. This high symmetry allows for tripl5' as well as doubly
degenerate 

-oà"r. 
As with symmetric tops we have to fix the definition of these modes. The

usual method is to make two symmetric and one antisymmetric with respect to a o4 plane.
With the introduction of vibrational angular momentum due to the tripli.' degenerate

modes the formulae previously given for asymmetric tops become considerabl5' more compli-
cated. One now has to allorv for coupling of this angular momentum u'ith that due to the doubly
degenerate-modes and the overall angular momentum. At this stage the reader is referred to
Rel. S and Ref. 9 for more complete treatments. Here we give only a brief introduction. The
method found most efficient to handle spherical tops is that of irreducillle tensoÌ operators.
For example, the transformed rotational Hamiltonian I/ea is given by

Foe: -D0')' - nrRU)

where É1+; ir the irreducible rotational tensor operator of rank 4.

É(+) _ loI  i j  -  6ú\ '  +ziz

The quartic centrifugal distortion constants D and D1 are analogous to those of asl'rnmg1ti.
tops. Similarly one obtains the sextic constants H, Hn, and Hor from f/oe. The interaction
between rotation and vibration is written

Ezz : - ? "-,i k7, + i?,))i' +\aif,1220) +la'if,1zza) + a,î,

where îr@yz) is the vibration-rotation tensor operator derived from ,R(y) and V(r). t2 is
the operator describing the interaction of the vibrational angular momentum of the doubly
degenerate mode and the overall angular momentum. The relationship between the vibration-
rotation constants given above and those given by Herranz [9] is

f ,1r--(ok+f l (L.4)

(L.1)

Explicit lS' i t  is girren b)'

(L.2)

(L.3)
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0r :
(2ór * 3cr) _ e'k

15 3
6r- -(óu - .*) - -Z}o'i

Turning now to the vibrational Hamiltonian we might expect considerable complication due to
the vibrational angular momentum of the degenerate modes. Further, for a rnolecule of sym-
metry Ta the energy levels are split into tetrahedral sublevels. The transfolmed Hamiltonian
of interest is f/ao given by

Enr- Fno(scalar) * Eno(tensor) (L.7)

The first term gives the anharmonic correction to the vibrational levels analogous to asy'mmetric
top molecules

T
m1.n

where 12 is the vibrational angular momentum operator of the doubly degenerate node, /r and
Jr, a,re the corresponding operators for the triply degenerate modes and l,!a(220) is a vibrational
irreducible tensor in the space of the triply degenerate modes. The final term is similar to the
l-doubling in symmetric tops. These constants can be identified with the notation of Hecht [8]

H no(scc lar) x*n(;T k?*,. a,.)  r l t+ pl);+k\p+ p'"ù)

(L-5)

(L.6)

(L.8)

(L.9)

(L.10)

(L.11)

lxbhî|+ I
t<t '

Xt,t,,(lt lr ') * ,Yin vsq(220)

X^n = X^n X1r1r, = Gg, X'"n - Sg

The second term in Fro gives the splitting into tetrahedral sublevels

Eio : D xli,ilu(zz4) +D xí,w,(z)
t<tt  t

Xi,'| : Try

As we shall be only be interested in the splitting of the triply degenerate modes rve shall ignore
the second term. In the notation of Hecht [8]

Spherical tops are considerably more complicated than either asymmetric or symmetric tops.
As for the symmetric tops described above, the form of the degenerate norrnal modes must be
fixed to convention, but this time the alignment must be performed manualll'. An1, problems
with running these molecules should be referred to the authors.
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Appendix M

Main Input Options.

Table M.1: Table of input options.

Option Name R.ange of values Mea,nit g
I Ncart

2 Isotop

Nbond
Nbend
Nlbend
Nofpb
Ntors
Nderiv -2,-3;4

Cartesian normal -) intemal
Internal -) normal
Cartesian -) normal
Internal -) cartesian
Use the default u'eights in subrou-
t ine "dist"
Use the rveights uuder # \ \ /EIGHT
#
Number of bond stretches
Number of angle ber.ds
Number of l inear bends
It{umber of out-of-plane bencls
Number of torsions
Highest degree of energ)' derivative
to be used. If negative. read Carte-
sian second derivatives in HO]\íDO
format.
Whether to use internal svmmetry
coordinates
Whether to use curvil inear normal
coordinates [11],  normal ly 0
Whether to manually align
degenerate normal coordinates
normally 0
Change the labellittg of frequencies
to match convention
Printout options
0 least, output, 2 most outPut

1 (or 0)
2
99

?c
1 (o '  0)

-1

JLtr
JItr
JLTT
JL
TT

#
,2,  3

3
4
5
6
F?

I

8 or4

11

10

t2

13

IsYmm

Icurvq

Idegnl

Ifreq

Iprnt

1 (\ 'es) 0 (No)

1 (Yes) 0 (No)

I (\ 'es) 0 (No)

0 (No) # (Yes-number of changes)

0.1orz
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Table M.1: Table of input opt ions (cont inued).

Option Name Range of values Meaning
T4 Nwrfq

Nprop

Icoril
Iferm I

Iferm2

Irotrn

Ilsqrs

Iaverg

Irep

Iparmf

Iparmd

Igeom

1 (Yes) 0 (No)

0,  1,  21 3

0 (No) 1 (\ 'es) 2 (and change tols)
0 (N") I (Yes) 2 (and change tols)

0 (No) I (Yes) 2 (and change tols)

0,  1,  2, ,  3,  4

1 (Yes) 0 (I.{o)

1 (\ 'es) 0 (No)

0-6

1 (\ 'es) 0 (No)

1 (Yes) 0 (l.lo)

ZM,AT #
# Temperature

calculations
(\ 'es) 1 (Yes) 2 (and change tols) Account for

resonance
#

0,1 ,2

Introduce ne\4' harmonic frequen-
cies (Normally 0)
Highest degree of dipole derivative
to be used
Account for a Coriol is resonance
Account for a Fermi t1'pe I
resonance
Account for a Fermi type 2
resonance
Project out translation and rota-
tion from cartesian derivatives
Least squares fit harmonic frequen-
cies to observed spectral l ines nor-
rnally 0
Calculate vibrationall l '  averaged
coordinates
Representation used in comput-
itrg centrifugal distort ion constants
(default  -g;
If the force f ield is restricted or
weighted
If the dipole f ield is restrict,ed or
weighted
Read geometrv frorn under #
GEOI\,I #
Read geometrl' from unit 10
Read geometrv from under #

to lte used in intensitv

a Darl ing-Dennison

The maximum value of the angular
momentum used in the rotational
analysis, normallS, 0
Used to read in a, ne\\' reduced nor-
mal coordinate force field. Set to
0.

15

16
r7

18

19

20

2L

22

23

24

25

26

27

28

29

1
-1

Itemp

Idarl

It,faxj

Inorm
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Appendix N

Input-Output Units.

Table N.1: Table of FORTRAI'{ unit numbers.

I"l nit Number Description of use
5
6
FI

I

8
10
15
30
40
4T
51
55
56
65
66
67
6E
69

It{ain Input deck
Output
Iieyword input
Print  Fi le input
Alternative geometry input
Cartesian second derivative input
Cartesian third derivative input
Cartesian fourth derivative input
General dump file
Coriolis Sum Rule File
Reduced normal coordinate third derivative input
Reduced normal coordinate fourth derivative input
Cartesian equilibrium and first derivative dipole input
Cartesian second derivative dipole input
Cartesian third derivative dipole input
Reduced normal coordinate dipole first derivative input
Reduced normal coordinate dipole second derivat,ive
input
Reduced normal coordinate dipole third derivative input
Cartesian first derivative polarisability input
Cartesian second derivative polarisability input
Cartesian first derivative first hyperpolarisability input

70
7T
72
F,Ptc
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